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In an earlier paper, an O(N) method for the computation of stationary 
solutions to the Euler equations of inviscid compressible gas 
dynamics has been described. The method is a variant of the multigrid 
technique and employs semi-coarsening in all co-ordinate directions 
simultaneously. It provides good convergence rates for first-order 
upwind discretisations even in the case of alignment, the flow being 
aligned with the grid. Here we discuss the application of this scheme to 
higher-order discretisations. Two-grid analysis for the linear constant- 
coefficient case shows that it is difficult to obtain uniformly good 
convergence rates for a higher-order scheme, because of waves 
perpendicular to stream lines. The defect correction technique suffers 
from the same problem. However, convergence to a point where the 
residual of the total error (the sum of the iteration error and the dis- 
cretisation error) is of the order of the truncation error can be obtained 
in about seven defect correction cycles, according to estimates for the 
linear constant-coefficient equations. This result is explored for the 
nonlinear case by some illustrative numerical experiments. 0 1992 

Academic Press. Inc. 

1. INTRODUCTION 

A bottleneck in the application of the multigrid technique 
to the computation of inviscid stationary flows is alignment 
[2,4]. Stream lines following grid lines become decoupled 
in the direction perpendicular to the flow. A high-frequency 
iteration error (deviation from the steady state) in that 
direction cannot be removed by smoothing because there is 
no coupling, nor by solving the equations on a coarser grid 
because high frequencies cannot be represented on the 
coarser grid. The result is slow convergence. 

One way to deal with alignment is the use of global 
relaxation schemes, such as Gauss-Seidel relaxation or line- 
relaxation. In [lo] it was shown that GaussSeidel and its 
symmetric variants can only partly handle alignment. There 
are still waves for which the multigrid method does not 

* A shorter version has been presented at the AIAA 9th Computational 
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converge. For the Euler equations in two dimensions, 
alternating direction damped line Jacobi can provide a 
uniformly good convergence rate [ 141. 

Another way to tackle alignment is the use of semi- 
coarsening. This approach is followed in [ 111. For 
arbitrary flows, semi-coarsening must be carried out in all 
co-ordinate directions simultaneously. To accomplish this, 
the method described in [ 111 employs multiple coarser 
grids on a given level of coarseness, while maintaining its 
O(N) complexity. A uniformly good convergence rate can 
be obtained for a lirst-order upwind discretisation of the 
two-dimensional Euler equations. The method provides a 
nonlinear alternative to line-relaxation. 

In this paper we will discuss the application of the same 
method to higher-order upwind discretisations of the Euler 
equations in two dimensions. The spatial discretisation is 
based on van Leer’s kappa-schemes [20] and provides 
second- or third-order accuracy. Details are given in 
Section 2. The multigrid method is reviewed in Section 3. 
In [12], it has been shown that the convergence rates 
for higher-order discretisations are poor. This result is 
explained here in a simpler way. The defect correction 
technique (cf. [4]) cannot provide good convergence rates 
either. However, it can provide convergence to a point 
where the residual of the total error (the sum of the iteration 
error and the discretisation error) is of the order of the 
truncation error in about seven defect correction cycles, at 
least in the linear constant-coefficient case. Numerical 
experiments are carried out to explore this result for the 
nonlinear equations. Details of the nonlinear implementa- 
tion are described in Section 4 and results are presented in 
Section 5. 

2. SPATIAL DISCRETISATION 

The Euler equations of gas dynamics that describe the 
flow of a perfect inviscid compressible gas are 

aw iif aa 
x++++“o, 
at ax ay (2.la) 
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Here the vector of states w and the fluxesf and g are given 
by 

The density is denoted by p, and u and v are the x- and 
y-component of the velocity. The energy E, total enthalpy 
H, pressure p, and sound speed c are related by 

1 P 1 E=-- +-(u2+v2), 
Y-1P 2 

H=E+p 
P’ 

c’& 
P 

(2.lc) 

Our aim is the efficient computation of the steady state 
awlat = 0. The spatial part of the system is discretised by 
upwind differencing. The vector of state quantities w is 
represented by cell averages wi,j on a grid consisting of 
arbitrary quadrilaterals, having four vertices denoted by 
(i-+,j-$), (i+i,j-i), (i+i,j+$ and (i-i,j+i), 
and midpoints of faces labelled as (i, j - $), (i + i, j ), 
(i, j + i), (i - 4, j). This configuration is sketched in Fig. 1. 
The integral of aflax + ag/ay over the cell area is discretised 
as 

r,j=li,j- l/2 T,,i’lpf(Ti,j- 1/2W(qil), Ti,j- 1/2W(q{f- 1)) 

+ ii+ 1/2,jT,‘+‘I/2,jf(Ti+ I/2,jW(qG ), Tf+ Il2,jW(dL 1.j)) 

+ li,j+ 1/2 T,yj’+ 1/2f(Ti,j+ 1/2W(q/,; 12 Ti,j+ 1/2W(q:T+ 1)) 

+ Ii- 1/2,jTtY11/2,jf(T;- Ij2,jW(qf,y 1, Ti- 1/2,JW(qj+ l,j)). 
(2.2a) 

This expression will be referred to as the residual. Note that 
the fluxes f and g can be transformed into each other by 
rotation. Each rotation matrix T transforms w in such a way 
that the second component of Tw is the outward momen- 

(i-112,j) 
(ii) (i+l/2,j) 

k---,-k (i+1/2,j-l/2) 
(&j-1/2) 

(i-1/2,j-l/2) 

FIG. 1. Quadrilateral cell (i, j) showing the numbering of cell faces 
and vertices. 

turn perpendicular to the cell face, and the third is the 
momentum parallel to the cell face. In (2.2a), f(w,, w,) is a 
numerical flux corresponding to f in (2.lb) that provides an 
approximate solution to the Riemann problem in the direc- 
tion perpendicular to the cell face. In this paper we will use 
either van Leer’s flux-vector splitting [19] or Osher’s 
scheme in the natural ordering [15, 161. Both are suf- 
ficiently smooth (Lipshitz continuous) for our purpose. The 
first rotation matrix at the midpoint of face (i,j - 5) is given 
by 

T I, I- I/2 = 

‘1 0 0 0 
0 cos di, j- l/2 sin #i,, 0 ~ 112 

0 -sin d;,,- 112 COS $i, j- 112 0 

\O 0 0 1 

where 

I (2.2b) 

cos di,,j-l/2=(Yi+1J2,j- t/2-Yi- 1/2,j-l/2 l//i, j - I/2? 

sin di,j- 112 = -(Xi+ )lli,j- 1/2,j- 112 --xi- 1/2,j- 112 1123 

Ii,,- I/Z = [(xi+ l/2,,- l/2 -Xi- 1/2,J- 1/212 

(2.2c) 

+(Yi+,/2,,-1/2-Yi~,/2,J-1/2) 2 1 l/2 . 

The outward normal is (cos di,j- ,,2, sin 4i,jP ,,2)T. The 
length of the cell face is I, jP ,,2. The rotation matrices for the 
other sides follow in a similar way. The expression w(q) 
denotes a one-to-one transformation from a set of state 
quantities q to w. The quantities qi,< and qi: are values at 
the cell faces obtained by interpolation from the state 
qi, j = q( wj, j). A first-order-accurate scheme is obtained if the 
interpolated values simply equal the interior values. Second- 
order accuracy is obtained by using van Leer’s kappa- 
scheme [ 1, 203 which lets, in the i-direction, 

qj,; =qi,,+&l;,;, A;,;) 

x[(l-IC)df,~+(l+K)dj,~l, 

qj,; =qi,J-&l;,;, Ll:,g 
(2.3a) 

x[(l-lc)dj,~+(l+K)di*~l. 

Here 

Ai,: =qi.j-q;-l,j, A;,; =qi+l,j-qi,j. (2.3b) 

The function s( A ~, A + ) is a limiter that prevents numerical 
oscillations. We use a smooth limiter due to van Albada 
[is]: 

s(A-, A+)= 
2(4-A+ +E;) 

(Ap)2+(A+)2+2~:’ 
(2.3~) 
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The constant E, prevents division by zero. We use E: = 10 -I6 
in the numerical experiments of Section 5. Expressions 
similar to (2.3) are used for thej-direction. 

The standard second-order upwind scheme is obtained 
for K = 0. Central differencing is obtained with K = 1, if the 
limiter is not used (s(d -, A + ) = 1). The choice K = - 1 
provides a one-sided upwind scheme. For K = 4, we obtain 
third-order accuracy in a point-wise sense, but not in a 
volume-averaged sense, because there is a second-order 
difference between point-values and volume-averages. The 
limiter may cause the accuracy to reduce to first-order at 
isolated points. Also, the flux of the average state at the mid- 
point of the cell face is not equal to the average of the flux 
over the cell face. Furthermore, steady discontinuities are 
smeared out over at least two cells, which results in a local 
0( 1) error. Thus, we have at most second-order accuracy in 
smooth regions of the flow and first-order or even zero- 
order accuracy at isolated points or lines. For this reason, 
the discretisation is referred to as a high-resolution scheme. 
An additional problem occurs if the grid is not locally Car- 
tesian or if cell sizes vary strongly from one cell to another. 
Then the one-dimensional interpolation (2.3) should be 
corrected for stretching and curvature. Here we will assume 
that the grid is locally Cartesian without significant 
stretching from cell to cell. Note that the aspect ratio of the 
cells is not involved in this discussion; it may be far away 
from 1. 

So far, we have assumed that the independent variables 
are the conserved variables w of (2.1). It has been pointed 
out by the authors of [6] that another set can be used as 
well. Here we use 

w= (P, 4 fJ> CIT> (2.4) 

as the set of independent variables. Other choices, not con- 
sidered here, are the entropy S instead of p, or the pressure 
p instead of c. The variables for the interpolation (2.3) in 
the kappa-scheme are chosen to be q = (S, U, u, c)‘. This 
choice makes it easier to perform the correct characteristic 
switching near boundaries. For outgoing characteristics in 
the direction perpendicular to the boundary, we extrapolate 
differences of the characteristic variables, whereas for 
incoming characteristics, the differences are computed with 
respect to the given exterior variables. After this has been 
done, we transform back to differences of q. 

The residual is measured by defining a quantity 

Ri’i= kf??.?,d 

bi,,,k / 

> 1 Wj,j,k 1 + hi,i,k ’ 
(2.5) 

where hi,,,2 =hi,j,,=ci,jandhi,j,,=hi,j,,=O,computingits 
/,-norm by addng R,,j over all cells, and dividing by the 
total area of the computational domain. 

3. MULTIGRID AND DEFECT CORRECTION 

The multigrid variant used in this paper has been 
presented in [ 111. The method employs semi-coarsening 
in two directions simultaneously (for a two-dimensional 
problem). Figure 2 shows the various grids employed if the 
finest grid has 8 x 8 points and the coarsest has 1 x 1. For a 
problem in d dimensions, the total number of points on all 
grids is 2dN, where N is the number of points on the finest 
grid. The cost of a V-cycle is proportional to this number, 
whereas the cost of an F-cycle is proportional to (d + 1) 2JN. 
For a W-cycle, the O(N) complexity is lost. A definition of 
V-, F-, and W-cycles can be found in [2]. 

The usual restriction and prolongation operators have to 
be modified to handle input from more than one grid. If one 
grid needs data from two finer grids, the two sets of data 
obtained by the restriction from each finer grid are averaged 
with equal weights. For prolongation, the correction is com- 
puted with respect to the latest fine-grid solution available, 
which now may be different from the one used during 
restriction. 

This method is useful for any problem with strong 
anisotropy. It cannot, however, handle alignment at 45”. 
(A method developed by Hackbusch [ 51 treats this case 
correctly at an increased complexity of O(N log N). It is 
not clear, however, how to construct stable coarse-grid 
operators for his scheme in the nonlinear case.) In [ 111, it 
is shown that alignment at 45” is not a problem for the Euler 
equations of gas dynamics if first-order upwind differencing 
is used. Two-grid analysis for the linearised Euler equations 
with constant coefficients leads to a worst-case two-grid 
convergence rate of 0.5 per cycle, if damped Point-Jacobi is 
used as smoother. Numerical experiments on the nonlinear 
Euler equations show multigrid convergence rates better 
than 0.5. 

A fundamental problem encountered in extending the 
method to higher-order discretisations is the fact that the 

1,4 

“I J2’22. / 
4,1 

112 2,1 
‘I / 

181 
FIG. 2. Arrangement of finest (8 x 8) and coarser grids, that leads to 

an O(N) multigrid method for problems with alignment. The arrows 
indicate how the grids are linked by restriction (downward) and prolonga- 
tion (upward). 
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exact operator vanishes for waves perpendicular to stream 
lines. Alignment, as mentioned earlier, is one of the results. 
Another one has been described in [ 121: for a scheme of 
order p, the worst-case two-grid convergence rate cannot be 
better than 1 - 2-p. Note that the first-order (p = I) solver 
described above actually obtains this value as its worst-case 
two-grid convergence rate. 

This lower limit can be explained as follows: Consider the 
linear scalar operator 

with u > 0, v 3 0. (3.la) 

The symbol of this operator is 

i=i(uw,+vw,), (3.lb) 

where w, and wy are frequencies. It vanishes if VW, = - uo,, 
i.e., for waves perpendicular to stream lines (charac- 
teristics). Suppose this operator is discretised on a grid with 
cell size h. This yields a discrete operator Lh, which has a 
truncation error rh of O(P). Let the solution be computed 
with a two-grid method, involving a fine and a coarse grid. 
The coarse-grid correction operator is 

K=Z-Z;h(L2k)p' ZzhLh. (3.2) 

First the line-grid residual Lh is restricted to a coarser grid, 
using a restriction operator I?. Then the coarse-grid 
problem, which involves the residual operator L2h, is solved 
exactly. Finally, the fine-grid solution is corrected by the 
coarse-grid result, using a prolongation operator Zi,. 
The coarse-grid correction operator should remove low- 
frequency iteration errors, and is used in combination with 
a smoother that removes high-frequency errors. Because the 
smoother is usually inefficient for low frequencies, the con- 
vergence of low-frequency iteration errors depends almost 
entirely on K. For the lowest frequencies (0, and w, close 
to zero), the restriction and prolongation operators have 
practically no effect, so 

KEZ-(LZh)-'Lh. (3.3) 

If the exact operator vanishes, the discrete operator Lh 
equals the truncation error rh. For those waves, 
K 2: 1 - rh/rZk. If the scheme is of order p, then rh/r2’ N 
hPl(2hY, so K N 1 - 2-p. This implies that the worst-case 
convergence rate is at best 1 - 2-p. For a first-order scheme, 
the resulting 0.5 is acceptable as the convergence rate. 
Values larger than that are not attractive, because one must 
carry out many cycles on coarser levels to obtain a 
sufficiently accurate solution of the coarse-grid equations. 
This may increase the complexity beyond O(N). 

For higher-order schemes, the situation is actually worse 
than suggested by the above estimate. If first-order restric- 
tion (volume-averaging) and prolongation (piecewise con- 
stant interpolation) operators are chosen, the coarse-grid 
correction operator for the second- and third-order scheme 
is unstable. The third-order scheme (K = f) can be stabilized 
by using a third-order restriction operator. The second- 
order scheme can be stabilized by using residuals on coarser 
grids that are first-order in the direction of semi-coarsening. 
This, however, increases the lower limit for the worst-case 
convergence rate to 1 (no conv,ergence at all). The reader is 
referred to [ 121 for details. 

The above implies that one cannot design a multigrid 
scheme with a uniformly good convergence rate for a spatial 
discretisation based on second-order upwind differencing. 
For a third-order scheme, one might be able to obtain a 
convergence rate of at best 5, which is not very impressive. 
However, these conclusions are too pessimistic, as the 
values are dominated by those waves for which the exact 
operator becomes of the order of the truncation error. 
Because it does not make much sense to require con- 
vergence below the truncation error, the numbers found are 
not representative for the performance of the multigrid 
method. 

There does not appear to be a simple way to measure con- 
vergence relative to the size of the truncation error in the 
context of local mode analysis. It can, however, be easily 
accomplished in the framework of the defect correction 
technique (cf. [4]). 

It should be noted that defect correction cannot provide 
a uniformly good convergence rate for the present problem. 
Consider a linear operator Lt with an order of accuracy 
p > 1 and an exact first-order solver. The iteration operator 
for defect correction is 

z-(Ly L;. (3.4) 

If the exact operator vanishes, we obtain a convergence rate 
1 - $/rt = 1 - O(hp-'). However, this results is again 
dominated by the truncation error. 

Better estimates can be obtained if convergence down to 
machine-zero is abandoned. For the linear constant-coef- 
ficient case, it can be shown that the residual of the total 
error (the difference between the current guess of the 
numerical steady state and the projection of the exact solu- 
tion to the same grid) is bounded by an 0( 1) constant times 
the truncation error 2:: (see the Appendix). This bound can 
be reached within 10% in about seven defect correction 
steps, implying that seven steps are sufficient to obtain a 
higher-order solution. To derive this result, it is assumed 
that the problem is linear with constant coefficient and 
periodic boundary conditions. Successive grid refinement is 
used, starting with a fully converged solution on the lirst 
coarsest grid and interpolating the solution after a fixed 
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number of defect correction steps to subsequently liner 
grids. The first-order solver used for defect correction is 
assumed to have a convergence rate 0.5. 

An important assumption for the above estimate is that 
new global structures should not suddenly appear after 
interpolation to a liner grid (unless they are of the order of 
the discretisation error). This assumption will be violated, 
if for instance, there are details on the boundary of the 
computational domain that are not resolved on coarser 
grids and suddenly appear after grid refinement. One could 
think of a totally different inflow condition in one cell on a 
boundary with a constant inflow rate in all other cells. This 
will give rise to a large-scale structure along a stream line 
that requires many more defect correction cycles than the 
seven mentioned above. An alternative is the use of a global 
relaxation scheme on the higher-order residual that con- 
verges rapidly for this structure. In [3], GausssSeidel 
relaxation in the flow direction is suggested. Unfortunately, 
this scheme is unstable when used with higher-order upwind 
differencing, unless full upwind weighting is used (K = - 1). 
For the numerical experiments in Section 5, we will use con- 
stant inflow boundaries, so this issue will not be important. 

If locally large errors show up after grid refinement, the 
estimate of seven defect correction cycles is not valid either. 
However, local errors can be easily removed by some extra 
smoothing steps on the higher-order residual. Details will be 
given in Section 5. 

It should be noted that defect correction has been applied 
to the Euler equations in earlier work [S, 91, using van 
Leer’s flux-vector splitting. This scheme smears slip lines, 
and therefore does not suffer from alignment if damped 
symmetric Gauss-Seidel is used as smoother [lo]. A 
fundamentally different approach is chosen in [ 7, 173, using 
a first-order solver described in [6]. These authors start out 
with a first-order solution on the finest grid. Because their 
first-order solver is not exact, not even for the long waves, 
at least O(log N) iterations with the defect-correction 
technique are required, thus leading to an U( N log N) com- 
plexity. The situation is actually worse, because their tirst- 
order solver suffers from alignment. 

4. NONLINEAR IMPLEMENTATION 

Here we discuss some details of the nonlinear implemen- 
tation of the defect correction method with the first-order 
solver based on semi-coarsening [ 111. The method starts 
on a not too coarse initial grid. Defect correction steps with 
a first-order solver are carried out until the higher-order 
numerical solution has converged. The result is interpolated 
to a grid with twice the number of cells in each co-ordinate 
direction. Then, a fixed number of defect correction steps is 
performed. The result is interpolated to the next finer grid, 
etc. We choose to perform eight defect correction cycles on 
each subsequently finer level-one more than suggested by 

581/100/l-7 

the linear analysis. The aim is to show that eight cycles with 
the first-order solver are sufficient to obtain a higher-order 
solution. Between defect correction cycles, one smoothing 
step with a two-stage scheme is carried out on the higher- 
order residual to remove locally large errors near shocks or 
other singularities. 

The upwind discretisation has been outlined in Section 2. 
We use van Leer’s flux-vector splitting [19] or Osher’s 
scheme in the natural ordering [ 15, 161 as an approximate 
Riemann solver. Only K = $ (“third order”) is considered for 
the high-resolution discretisation. 

In a defect correction step, the first-order solver acts on 
the sum of the most recent first-order residual Y,( IV’) and a 
correction term Q, which is the difference between the 
higher-order residual rp( IV) and first-order residual r1 ( IV) 
at the beginning of the cycle. That is, the first-order solver 
finds the approximate solution W’ to 

r,(W’)+Q=O, Q=~,(w)-r,(w). (4.1) 

After this has been done, the higher-order solution is 
updated by W := IV’. Because the high-resolution residual, 
in general, ceases to converge if the iteration error becomes 
of the order of the truncation error, examining its con- 
vergence rate does not provide much information. It is use- 
ful to monitor the convergence rate of the first-order solver 
(at the cost of computing an extra fine-grid residual). If a 
cycle provides a first-order convergence rate worse than 0.6, 
some extra smoothing with damped Point-Jacobi is 
applied. If this does not help, the cycle is repeated. In the 
examples presented in Section 5, this never occurred except 
in the initial stages of successive grid refinement at very 
coarse grids. 

The first-order solver has been described briefly in Sec- 
tion 3 and in detail in [ 111. As already noted in Section 3, 
a standard multigrid approach can be used for van Leer’s 
flux-vector splitting, because it smears stream lines and 
does not suffer from alignment. Here we choose to use the 
more complex first-order solver based on semi-coarsening, 
because it can handle Osher’s scheme as well. 

The restriction and prolongation operators for the lirst- 
order solver are volume-averaging and piecewise constant 
interpolation, respectively. Both are first-order operators. 
F-cycles are used, with one post-smoothing step on each 
grid. 

The smoother for the first-order solver is damped Point- 
Jacobi. In the nonlinear case, this scheme determines pi,, 
from the equation 

rli.j(@‘r.j> W~-I,,> Wi+~,j> Wi,j-13 W,,i+l)+Qi.i=O 
(4.2a) 

for all i and j and then updates the solution according to 

w:=gw+ rv). (4.2b) 
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A less costly (but potentially less robust) approach is 
obtained by performing just one Newton step, 

W,j I= Wi,, - $N,’ (r,i,j + Qi,j), (4.3) 

where N, j = i3r,, j/a Wi, j. This scheme is adopted here. 
For van Leer’s flux-vector splitting, the matrix Ni,j is 

non-negative. To make it positive, we replace it by 

fii,j=Ni,j+al, (4.4) 

where u is a positive scalar. Following [21], the parameter 
0 in (4.4) is chosen to be e = E;’ max, j R,,, with R, j given 
in (2.5). This decreases the change in the solution if the 
residual is large and helps to avoid negative values of p and 
c, although this is not guaranteed. The parameter E, con- 
trols the relative change in the solution and is chosen to be 
1. Smaller values can be used for complex flows with strong 
shocks, but then the number of relaxation sweeps must be 
increased. 

For Osher’s scheme, this approach fails because the 
matrix N,, can be extremely ill-conditioned. It can be made 
non-negative by using an approximate linearisation. This is 
done as follows. For the first-order scheme, the first term on 
the right-hand side of (2.2a) contributes a matrix 

where 

(4.5a) 

?fi,, - l/2 
4.,-w= aw, 7 

I,/ 

W;,j= T,,- I/z Wi,j. (4.5b) 

For Osher’s scheme, we replace A,,j_ ,,2 by A,tjp ,,?( W:,,), 
where A + ( W) is obtained from A( W) = df( W)/d W by 
transforming to its diagonal form, setting the negative 
eigenvalues to zero, and transforming back. This 
approximate linearisation performed satisfactorily in [ 111. 
The resulting non-negative matrix can be made positive 
by (4.4). 

Near boundaries we use a linearisation that is the same as 
for interior cells. Any special dependencies of boundary 
values on solution and exterior values are ignored. 

For the grid refinement of the high-resolution solution we 
use third-order interpolation. Within each cell on the 
coarser grid, a linear distribution of states is computed in a 
manner similar to (2.3), but with K = 0. The initial guess on 
the finer grid is obtained by evaluating the values of the 
linear distribution at the four new cell centers. 

After grid refinement and between defect correction 
cycles, extra smoothing can be applied on the higher-order 
residual. This is necessary if the solution is not smooth. We 
use a two-stage scheme: 

w* := w-p&w)-’ Yp( W), 

W := W- B,jiQ W*)-’ r,( W*). 
(4.6) 

A less costly version uses fi( W) instead of fl( W*) for the 
second step. In the computation of fl, we ignore the inter- 
polation from cell centers to cell faces. The parameters f31 
and /I2 can be chosen as to provide an optimal smoothing 
rate. A (conjectured) optimal choice for the scalar convec- 
tion equation UW, + uwy = 0 with third-order upwind dif- 
ferencing (K = f) under the requirement that the smoother 
is total variation non-increasing and linearly stable, is 
28, = /I2 = 6(7 - 2 &)/29 = 0.523. The resulting smoothing 
rate is j = 1 - $/lz( 1 - i/?r) = 0.841. Details are given in the 
Appendix. In the examples of the next section, scheme (4.6) 
is applied once between multigrid defect correction cycles. 

A problem in any nonlinear multigrid method is the 
occurrence of solution values outside the admissible range. 
Negative densities and sound speeds may occur after 
prolongation and relaxation. Experiments with monotone 
prolongation did not lead to satisfactory convergence rates 
for the first-order solver. In our code, we reject the entire 
coarse-grid correction if the result is inadmissible, even if 
this happens only in one cell. Given the redundancy 
apparent in Fig. 2, eliminating parts of the data structure 
does not necessarily lead to loss of convergence. If relaxa- 
tion leads to inadmissible values, we simply do not update 
the corresponding cell. A different nonlinear multigrid 
method by Hackbusch [4] may provide a more robust 
code, but this has not been explored. 

Another problem is the occurrence of strong discon- 
tinuities. These can cause large O(1) iteration errors after 
prolongation and grid refinement. Since these errors are 
local, they can be removed by additional smoothing. In a 

a 

b 

FIG. 3. (a) Mach-lines for Mach 0.5 inflow through a channel with a 
sin2 bump on a 128 x 64 grid. Contours are 0.025 apart. (b) Restriction to 
64 x 32 of the 128 x 64 grid used for Fig. 3a. 
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one-dimensional study reported in [ 133, the additional 
smoothing is carried out only locally if the residuals are 
large, at small extra cost. Local relaxation has not been used 
in the following section, as no solutions with strong discon- 
tinuities are considered, but it is expected to be necessary in 
general. An alternative approach to avoid large errors after 
prolongation and grid refinement is interpolation based on 
the operator (cf. [4], Section 10.3). In the present context, 
this would lead to interpolation of fluxes. The computation 
of states from fluxes involves a decision between a supersonic 
and subsonic solution. This remains to be investigated. 

5. NUMERICAL EXPERIMENTS 

As a first example, we consider a smooth flow through a 
channel with a sin2(rcx) bump, having a thickness 0.1 over 
a length 1. The length of the channel is 5, its height 2. The 
free-stream Mach-number is 0.5. At the left boundary, 

a 

b C 

L 4 
FIG. 4. (a) Restriction to 64 x 32 of the 128 x 64 grid used for Fies. 4b 

and 4c. (b) Mach-lines for Mach 0.5 inflow through a channel with a non- 
smooth bump on a 128 x 64 grid. Contours are 0.01 apart. (c) Mach-lines 
for Mach 0.85 inflow through a channel with a non-smooth bump on a 

inflow conditions are given by the free-stream values for 
total enthalpy, entropy, and inflow angle (0”). At the outlet, 
the free-stream value of the static pressure is imposed. It 
should be noted that characteristic in- and outflow condi- 
tions result in a weak boundary layer near the outlet and 
therefore are not used. Characteristic boundary conditions 
are used at the walls. Figure 3a shows Mach-lines for a 
128 x 64 grid, using Osher’s scheme. The restriction of the 
grid to 64 x 32 is presented in Fig. 3b, the finer grid being 

a 

b 

d 

FIG. 5. (a) Mach-lines for Mach 1.4 inflow through a channel with a 
non-smooth bump on a 128 x 64 grid. Contours are 0.025 apart. (b) As 
Fig. 5a, but after 100 defect correction cycles instead of 8. (c) As Fig. 5a, 
but for a first-order discretisation. (d) Restriction to 64 x 32 of the 128 x 64 

. . ^ - - 
grad used for k igs. 5a-c. 128 x 64 grid. Contours are 0.025 apart. 
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too dense to be properly displayed. The coarsest grid used 
has size 4 x 2. The relative order of accuracy of the solution 
can be estimated from 

( 
/( W4h - z;“h W2hI/ 

p=log2 IIW2h-zp,rll > (5.1) 

Here Zz” and Z;i are restriction operators based on cell 
averaging. For the example in Fig. 3 we find 2.5 for p, 2.5 for 
U, 2.2 for u, and 2.5 for c in the I,-norm. In the Z,-norm, 
values between 1.5 and 2 are obtained. The multigrid con- 
vergence rate of the first-order solver is well below 0.5. The 
defect correction convergence rate for the high-resolution 
residual on the finest grid, averaged over eight cycles, is 0.68. 
This experiment suggests that the linear estimates provide a 
reasonable description of the nonlinear scheme for smooth 
solutions. 

Next we consider flow through a channel with a non- 
smooth bump. The bump is a circular arc with a thickness 
of 4.2% of the chord. The length of the channel is 5, its 
height 2. The 128 x 64 grid is clustered near the bump. Its 
restriction to 64 x 32 is shown in Fig. 4a. Figure 4b shows 
Mach-lines for Mach 0.5 inflow, using Osher’s scheme. The 
relative orders of accuracy in the I,-norm are 1.3, 1.1, 1.4, 
and 1.3 in p, U, u, and c. These low values are not due to the 
iteration error; the same results are found after 100 (instead 
of 8) defect correction cycles when the residual has 
decreased with a mean convergence rate of about 0.93. The 
singularities at the endpoints of the bump lead to sharp 
peaks in the solution, which are responsible for the decrease 
of accuracy in I,. These singularities also pollute the 
downstream solution near the lower wall somewhat, as can 
be seen from Fig. 4b. 

Mach-line for Mach 0.85 on the same grid are shown in 

TABLE I 

Lift and Drag for a NACA0012 Airfoil on Various Grids for 
Osher’s Scheme and van Leer’s Flux-Vector Splitting (FVS) 

M,,a Grid Lift(B) Drag(g) I(8) Lift(lOO) Drag( la0) ~(100) 

0.80 32x16 0.3 158 0.0488 0.77 0.3097 0.048 1 0.88 

1.25” 64x32 0.3465 0.0286 0.77 0.3497 0.0284 0.93 
Osher 128x64 0.3517 0.0233 0.76 0.3525 0.0235 0.92 

0.80 32x16 0.3356 0.0561 0.75 0.3313 0.0564 0.95 
1.25” 64x32 0.3630 0.03 11 0.74 0.3675 0.0312 0.94 

FVS 128x64 0.3679 0.0247 0.74 0.3675 0.0247 0.80 

1.20 32x16 0.506 0.169 0.71 0.508 0.169 0.80 

7.00" 64x32 0.530 0.160 0.71 0.522 0.159 0.82 

Osher 128x64 0.525 0.155 0.75 0.524 0.155 0.90 

1.20 32x16 0.510 0.175 0.72 0.510 0.173 0.92 
7.00" 64x32 0.527 0.160 0.72 0.523 0.160 0,85 

FVS 128x64 0.523 0.155 0.80 0.524 0.155 0.97 

No&. M, denotes the free-stream math-number and w the angle of 
attack. Results are given for 8 and 100 defect correction cycles per grid 
refinement level. Also included is the mean convergence rate 1. 

Fig. 4c. Figure 5a shows Mach 1.4 inflow on a different 
128 x 64 grid (see Fig. 5d). Both results are obtained after 
eight defect correction cycles per level, using Osher’s 
scheme. The relative orders of accuracy do not reflect the 
dramatic improvement with respect to the first-order solu- 
tion (cf. [ 1 l] and Fig. 5~). For Mach 0.85 inflow, we obtain 
estimates of p around 1.2 in I, ; for Mach 1.4 inflow values 
around 0.6 are obtained. Because the estimates are 
dominated by the discontinuities, these results are not very 
illuminating. 

As an alternative, we can make a comparison between the 
size of the residual rh after eight cycles and the truncation 

a 
-1.5r 

1.5’ I 
-0.6 -0.4 -0.2 0 x 0.2 0.4 0.6 

b 
-1.0, 

6 

FIG. 6. (a) C,,-curves for a NACAOO12 airfoil (M, = 0.8, d( = 1.25”) 
for Osher’s scheme and van Leer’s FVS (dashed line). (b) As Fig. 6a, but 
for M, = 1.2 and a = 7”. 
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error rh. The latter can be estimated from the relative trun- where k denotes each of the four components, and either the 
cation error fr- or the /,-norm is used. For the Mach 0.85 example, we 

T? = Zyrh( W”) - rzh(Zih W”), (5.2) find $, = 0.19 and $m =0.45, whereas for the Mach 1.4 

using rh ~(2p - 1) rib. Define the ratios 
problem, 0.22 and 0.23 are found. Thus, the residual has 
converged to the level of the truncation error, which is 

h=t,;,$$ 
consistent with the linear analysis. 

To illustrate the effect of the remaining iteration error 
(5.3) (which is of the order of the discretisation error) on the solu- 

tion, Fig. 5b shows the solution for Mach 1.4 inflow after 
100 defect correction cycles. The residual is an order of 

a b 

FIG. 7. (a) Part of the restriction to 64 x 32 of the 128 x 64 grid used for the airfoil computations. (b) Mach-lines for Mach 0.8 inflow around a 
NACA0012 airfoil at 1.25” angle of attack. Contours are 0.025 apart. (c) Mach-lines for Mach 1.2 inflow around a NACAOO12 airfoil at 7” angle of attack. 
Contours are 0.05 apart. 

58i/loo/l-8 
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magnitude smaller than after eight cycles, the relative trun- 
cation error is practically the same. There are differences on 
a small scale, but the large-scale properties, including shock 
positions, are identical. Figure 5c shows a first-order solu- 
tion for comparison. 

The third set of examples involves flow over a NACA0012 
airfoil. A fairly orthogonal grid has been used, with a circle 
as outer boundary at 50 chord lengths (see Fig. 7a). Charac- 
teristic boundary conditions are applied at the wall and 
outer boundary. Table I lists lift and drag for two types of 
flow, using Osher’s scheme and van Leer’s flux-vector split- 
ting (FVS). The results, computed for eight defect correc- 
tion cycles, agree very well with those in [ 1, 71. The values 
of $ i and II/, are 0.12 and 0.13 for the first example in 
Table I, 0.041 and 0.16 for the second, 0.73 and 0.17 for the 
third, and 0.97 and 0.17 for the fourth. The effect of the itera- 
tion error can be seen by comparing to the result after 100 
defect correction cycles. The size of the differences due to the 
iteration error is of the same order as that of the differences 
between values for subsequent grids. The latter reflect the 
effect of the discretisation error. We conclude that the 
iteration error after eight cycles is of the same order of 
magnitude as the discretisation error. 

Pressure curves for the first case of Table I are shown in 
Fig. 6a. The solutions for Osher’s scheme and FVS agree 
reasonably well. The pressure curves for the second case 
(Fig. 6b) are practically indistinguishable. Mach-lines for 
Osher’s scheme are shown in Figs. 7b and 7c. 

6. CONCLUSIONS 

The performance of a multigrid method for higher-order 
discretisations of the steady Euler equations is limited by 
the hyperbolicity of the equations. Waves perpendicular to 
a stream line are difficult to remove by the coarse-grid 
correction operator and this leads to poor convergence 
rates. Because these waves are related to the truncation 
error (they do not appear in the exact differential equa- 
tions), the convergence rates obtained by two-grid estimates 
are too pessimistic. It does not make sense to require itera- 
tion errors to be much smaller than the discretisation error. 

The defect correction technique allows us to obtain 
estimates of the iteration error in terms of the discretisation 
error. Linear analysis shows that about seven cycles can 
provide a residual of the order of the truncation error, if 
higher-order upwind differencing is used and if the first- 
order solver has a convergence rate of at worst +. The con- 
vergence rate of the first-order solver can be monitored in a 
computer code. Measuring the convergence rate of the 
higher-order residual does not necessarily provide any use- 
ful information, because convergence will be slow or absent 
if the residual becomes of the order of the truncation error. 

Numerical experiments on a variety of flows show that 

acceptable results are obtained in a full multigrid code with 
eight defect correction cycles at each level of nesting. The 
convergence rate of the underlying first-order solver was 
better than 0.5 in all examples. The high-resolution residual 
converged to the level of the estimated truncation error. 

APPENDIX 

With defect correction, a solution with a total error of the 
order of the discretisation error can be obtained in a fixed 
number of steps, at least in the linear constant coefficient 
case. The number of steps required for the linearised Euler 
equations has been estimated in [ 121. This estimate will be 
repeated below for completeness. 

The following linearised version of (2.1) is adopted: 

(Ala) 

where 

(Alb) 

Here S = log(p/p’) is the specific entropy. The fourth equa- 
tion describes the convection of entropy along stream lines. 
The remaining 3 x 3 system represents the combination of 
convection and sound waves. In the isentropic case, the 
fourth equation can be dropped and the third component of 
MJ’ becomes 2c/y i . For the steady-state problem, we consider 
the linear operator 

with constant coefficients and periodic boundary condi- 
tions. This operator is elliptic in the subsonic and 
hyperbolic in the supersonic case. The fourth equation, 
considered by itself, is hyperbolic. 

To accomplish the upwind differencing, the matrix A is 
diagonalised by Q, , according to 

A=QAQ,‘, A, = diag(u - c, U, U, u + c), 

/ l 0 0 l\ 
0 -10 0 

I 0 0 1 . (A3a) 
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For B we have 

B= QAQ;l, A, = diag(u - c, v, v, v + c), 

/ 0 1 0 o\ 

(A3b) 

The matrix /i, (k = 1,2) is split into A: and /i;, which 
contain the positive and negative elements of nk, respec- 
tively. This implies 

n:+/i,=/i,, A: -A, = l/1,1. 

Now define 

A’-Q&Q;‘, B’=Q&Q;‘. 

It follows that 

A=A++A-, IAl-Q, IAll Q;l=A+-A-; 

B=B++B-, IBI=Q&I,l Q;‘=B+-B-. 

The discrete linear operator becomes 

Lh”hJ( T,, T,) = L$( T,) + L?( T,), 

where 

(A4) 

Re6(F,s,K)=2[[1-s+s(l-ic)sin’(i8)], 

Im d( f, S, K) = sin(B)[ 1 + s( 1 - K) sin2(@)]. 
(A9) 

(A51 

The singularities of the discrete linear operator ihY3hy are 
listed next. 

LEMMA. The linearised operator ihY,hl, with 0 < s, < 1, 
0 d s,, < 1, and K < 1, is singular only in each of the following 
cases : 

(‘46) 
(i) TX:,= 1, FJ,= 1 

(ii) F-X#l, FJ=l:u= -coru=Ooru=c; 

(iii) ?+X=1, ~Y#l:v=-corv=Oorv=c; 

(iv) fX#l, f-V#l:~=v=O. 

(ATa) The corresponding null-spaces do not depend on s,, sY, and K. 

and 

D(T,s,rc)=(l-T-‘)[l+fs((l-X)(1-P) 

+ Cl+ K-MT- 1))l (A7c) 

Here T, and T, are shift operators: T:v~,~= vz+k,,, 
TtVi,j= vi,lfk. We assume that the grid is Cartesian with 
a constant aspect ratio h,/h,. First-order accuracy is 
obtained for S, = S, = 0. For S, = sY = 1 and I KI d 1, we have 
a high resolution scheme. The scheme is third-order for 
K = $ in a point-wise sense. Other values of K lead to second- 
order accuracy. 

The analysis will be carried out in Fourier space. We 
consider Fourier modes of the form 

exp[-i(i0,+$,.)], i= 1, . . . . N,, j= 1, . . . . N,, (A8a) 

where the frequencies on a N, x N, grid are 

e,=2+, 
I 

8,=2+; 
2 

(A8b) 

I, =O, . . . . N, - 1, 12=0, . . . . N,- 1. 

The symbols of the shift operators are fX = exp(i0,) and 
FY = exp(i0,). The symbol of the operator is obtained from 
(A7) by replacing T, and T,, with p,, and f-V. In that case, 
we have 

The proof is straightforward and can be found in [ 121. In 
the following, the pseudoinverse of the residual operator 
will be denoted by (th,,‘+)+. 

Now consider defect correction. We will use a version 
based on successive grid refinement. First, the higher-order 
problem is solved exactly on a coarsest grid at level I = 0. 
The solution is interpolated to a finer grid at level I= 1, and 
a fixed number of defect correction steps with a first-order 
solver are carried out. The resulting solution is interpolated 
to the next finer grid, where the same number of defect 
correction steps is performed. This is repeated until the 
(approximate) solution at the desired level is found. 

Let the linear problem be Lu =f: The discrete operator 
on a grid at level 1 is LL with order of accuracy p. The coar- 
sest grid corresponds to level I = 0, and liner grids have grid 
spacings ht = fh’,- ‘, hi = fhf,- ‘. The discrete representation 
of the exact solution at level 1 is T”u, and f j, = Zk f is the 
representation off with order of accuracy p. The discrete 
solution of the higher-order problem Liz?’ = f k has a 
discretisation error e; = 7’~ - U’, and the corresponding 
truncation error of the residual is defined by rb = LLei = 
(LLT’ - Zk L) U. The current guess of the solution is uf , where 
i is the iteration count. The iteration error vf = ti’- uf, 
and the total error is zf = 7;~ -of. The current residual 
rf = f L - Lhuf = LLvi. 
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In our case, defect correction is used for the higher-order 
problem with an iterative scheme M’ that solves the lirst- 
order problem. Let 

&PE L;M’(L;)+, llm G A l-410) 

where the convergence rate X should be well below 1. The 
similarity transform based on L: is introduced to suppress 
waves in the null-space of L$ , which are not damped. The 
iteration error for the higher-order solution obeys 

vf,, = [Z- (I- M’)(L;)+ L;] vi, i>O. (All) 

Note that a necessary condition for boundedness of 
(Li)+ LL is that the null-space of Li is the same as, or a 
subset (for K = 1) of, the null-space of Li. This condition is 
met, according to the earlier lemma. 

The equivalent of Eq. (Al 1) for the residual is 

rf+, = LL[Z- (I- Aif’)( LL](Li)+ rf, i>O. (A12a) 

Using r’= LLz’- r:, this can be rewritten as 

L’ z! p r+, =L;(L;)+ [AT’L;z;+(z-AFi’)z;] 

+ Li[Z- (L:)+ L;] z;. (A12b) 

The first term on the right-hand side in square brackets 
clearly allows for convergence down to the truncation error. 
The last term may cause problems, though. Because the 
null-space of L: is a subset of the null-space of Li, the last 
term can be rearranged as 

(I- L;(L:)+) L;zf = L;(L;)+ (L: -L;) z;. (A12c) 

With successive grid refinement, it may be assumed that 
the initial guess of the solution has an error of the order of 
the discretisation error. Therefore, we let IILj,zi II = cxf 11~; /I, 
where of is assumed to be O(1). Also, we assume that 
II LL(L:)+ /I < C,,, , where C2,, is 0( 1). It follows that 

4+ I ll( II 6 G, I a; IIT:, II + (1 + 4 G.1 1121, II 

+c,,, lw:-L;b:II. (A13) 

The first term on the right-hand side decreases after each 
iteration if XC,, i < 1. The second term is of the order of the 
truncation error. The last term can be neglected if 

ll(L; - L;)zjll d IlL: - L;II ilzf II = O(/Z~+~). (A14) 

This estimate is valid only if zf is O(F) and sufficiently 
smooth. It will be violated, for instance, if completely new 
large-scale structures of a size larger than the discretisation 

error appear in the solution after grid refinement, because 
of, e.g., non-smooth boundary conditions or singularities 
in the flow field. If large errors occur only locally, some 
additional smoothing after grid refinement and between 
defect correction cycles may help to remove them. 

Assuming that (A14) holds and that I~r~II = O(V) ~0, 
which excludes trivial solutions, and neglecting higher- 
order terms in h, we find 

B(x, i) =z. 
(A15) 

Therefore, the defect-correction technique can provide 
a solution with a total error which is a factor 
(1 +A) G,,P(GI> i) times the truncation error. 

Next consider successive grid refinement. We would like 
to obtain an estimate of mf for a fixed iteration count. Given 
a solution ~4~ ‘, we obtain an initial guess on level I through 
interpolation: uh = II:- i ufP ‘. Here we assume that the 
order of interpolation is at least (p + 1). If /I r: II = 2p ItriP ’ I/, 
then CX~ = 2pc1fP I. If we assume that the problem on the first 
coarsest level is fully converged, implying that a”, = 1, we 
find for a fixed number of defect correction steps i on finer 
levels I> 0 that 

4Gi’+4(&~, C,,,, 6 l), (A16a) 

where 

[ = 2P(X,, , y, 

d(A PY G, I? i,~)=(l+~)C,,,D(~C,,,,i)B(i,~). 
(A16b) 

Here we have ignored terms of O(h) or smaller. 
To obtain quantitative estimates, we consider a second- 

order discretisation (p = 2) and a first-order solver with a 
multigrid convergence rate 2 = 4. Note that the multigrid 
convergence rate is usually larger than the two-grid con- 
vergence rate. The number 0.5 obtained for the method in 
Section 3 corresponds to the two-grid rate. However, the 
numerical experiments in [ 111 show a multigrid con- 
vergence rate well below 0.5, and this motivates the present 
choice for X. 

According to the lemma, L, and L, have the same null- 
space for K < 1. If K = 1, the null-space of L, contains the 
one of L, , but is larger. Equation (A12c) still holds, but the 
estimate (A14) may break down because of the checker- 
board mode. This mode may result in an initial guess after 
grid refinement which is not smooth enough. Therefore, the 
use of a scheme with K = 1 (central differencing) is not 
recommended. We will nevertheless include it in our 
estimates. 
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TABLE II 

The Constant C *,, 2 IIL:L2 // Determines a Bound on the 
Accuracy Achievable with the Defect Correction Technique 

K c:. I d($. *, c,,,, co, a) i( < 10%) 

1 1 .oo (3.00) (6) 
‘i 1.06 3.39 6, 7 
0 1.15 4.10 7 

-1 2.00 

Note. This accuracy is measured by qS(i. p, C2,i, i, I) times the norm of 
the truncation error. It is assumed that z = lifiI1 = 0.5. The third column 
gives the asymptotic values, which are independent of p, the order of 
accuracy of the discretisation. The last column gives the number of cycles 
needed to obtain this accuracy within 10%. The convergence estimate for 
K = 1 can not be justified and is only included for reference. The two values 
for K = 4 refer to p = 2 and 3, respectively. The other values of K result in 
second-order accuracy (p = 2). 

Results are listed in Table II. For Cz., , we have used the 
semi-norm 

II4 _max{p(i,(.)i~):ulc,vlc,h,lh., O,,Ol,f, (A17) 

where p( .) denotes the spectral radius. The similarity trans- 
form based on i, masks out the effect of singularities. The 
values of C,, , in Table II are obtained numerically by using 
the norm (A17) on i:i,,. For the fourth equation of the 
system (A2), we obtain C,, i = 1 for K = 1, Cz, l = J9/8 for 
K=l C,,=fiforrc=O,andC,,=2foric=-1,which 
hap&n to agree with the numerical results for the full 
system. The bound for convergence of the residual in terms 
of the truncation error is asymptotically determined by 
act, *> c,,,, m7 00). The asterisk indicates that this 
asymptotic value is independent ofp. It should be noted that 
the result for K = 1 cannot be justified, as already men- 
tioned. For K = - 1, the product XC,., becomes 1 and 
convergence is lost. Applying two defect correction cycles 
without updating the second-order residual does provide 
convergence, but this is not considered here. The last 
column of Table II lists the number of iterations required to 
reach the asymptotic result within 10%. This, or a slightly 
larger value, can be used as the number of cycles to 
be carried out in practical computations. The result 
i( < 10 % ) = 6 for K = f is obtained with p = 2. For p = 3, we 
obtain i ( < 10 % ) = 7. 

Some additional smoothing can be performed on the 
higher-order residual between defect correction cycles if the 
assumption (A14) is violated because of locally large errors. 
Point-Jacobi relaxation is linearly unstable when used with 
higher-order upwind ‘differencing, so we use a two-stage 
scheme: 

w’* .- .-w’-p,(IAl+ pII)-’ LPW’, 

M” := w’-j&(lA/ + lB()-‘L,w’*. 
(Al8) 

The damping parameters fi, and flz are chosen such that the 
scheme (A18) is (i) total variation non-increasing (TVNI) 
in the one-dimensional case, (ii) linearly stable, and (iii) has 
an optimal smoothing rate for the high-frequencies in the 
two-dimensional linear scalar case. The analysis is carried 
out for the equation uw, + VW.~ = 0, with u > 0 and v 3 0. It 
should be noted that for (ii) and (iii) we consider the linear 
scheme without the limiter (s = 1 ), whereas (i) is based on 
the limiter and is therefore a nonlinear scheme. We start 
with the TVNI property and consider the one-dimensional 
scalar equation uw, = 0. Define Aj+ 1,2 = wr + 1 - wi, where 
uli is the discrete solution in cell i on a grid with cell size h. 
Let Pi= Ai+ l/2/A, - l/2. The limiter (2.3~) at cell i lets 
si = 2pj/( 1 + pf). The first step of the two-stage scheme is 

-‘.fi+ I/Z-fi- l/2 

h ’ 
(A19a) 

where the flux 

.f,+1/2 = d'+'i+ F(P;, K) A,+,/z), 

(A19b) 
F(P4)=q1 +p2J 12P[(l-K)+(l+K)P]. 

Define 

,i=L+ 1,2-hp I,2 

UAi- l/2 

=l+);(Pi,K)-fTp;-~, K)/Pi-,. (A20 1 

Then 

which is TVNI for 0 < p, Hi d 1. Using the fact that 1~1 d 1, 

(l+K)-,/m 

and 

F(P> K) = PF( l/P, - K), (A22b) 

we find that 

l+;K-;dm 

<H,<l+i~+iJ2(l+l;i;T. (~23) 

For2-&dK<l,wemusthave 
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Next, consider the two steps combined: 

w,:= [l -B,Hi*(l -/?,HJ] wi 

+ CSZHI*(l-BI(Hi+Hi-I)l wi-l 

+ CB2HTB1Hz-11 wi--2. (A251 

A sufficient condition for non-negative coefficients, which 
implies that the scheme is TVNI, is 

0 G PI G f/L,X~ OdB2GPlllU3 

for KE [2-G, 11. (A261 

We continue with linear stability, condition (ii). In the 
scalar case, the amplification factor of the two-stage scheme 
obeys 

Iel’= (1 -P1B2f2J2+B2(l -V1foNP2f2-2fd~ (A27a) 

where 

with 

and 

UI Ik mu2 fi =- 1+ci ’ (A27b) 
f,=fi+.fL 

h, =2(1 -lc), (A27c) 

zk = sin2( 0,/Z), 

f4=(2+h,z,)&FZ 
(A27d) 

k= 1, 2. 

A necessary (but possibly not sufficient) condition for linear 
stability is 

O<P,~28,& for ic< 1. (A281 

To obtain an optimum smoothing rate, as required by (iii), 
we have to determine 

subject to conditions (A26) and (A28). The high-frequency 
range is defined by zk E [i, 11, for k = 1,2, and because 
of symmetry it is sufficient to consider tl~ [0, 11. 
Numerical optimisation of (A29) suggests an optimal 
smoothing rate for 2g, = p2 = fi,,, if K = $, namely, 
fi = 1 - ifimaX( 1 - b&,,). Using the same program with this 
choice of /3, and p2, we find the max,,,,,., lel< 1 for 
zk E [0, 11, k = 1, 2, implying linear stability. 
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